Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators
نویسندگان
چکیده
منابع مشابه
Reconstruction on Trees: Exponential Moment Bounds for Linear Estimators
Consider a Markov chain (ξv)v∈V ∈ [k] on the infinite b-ary tree T = (V,E) with irreducible edge transition matrix M , where b ≥ 2, k ≥ 2 and [k] = {1, . . . , k}. We denote by Ln the level-n vertices of T . Assume M has a real second-largest (in absolute value) eigenvalueλ with corresponding real eigenvector ν 6= 0. Letting σv = νξv , we consider the following root-state estimator, which was i...
متن کاملExponential bounds for minimum contrast estimators
The paper focuses on general properties of parametric minimum contrast estimators. The quality of estimation is measured in terms of the rate function related to the contrast, thus allowing to derive exponential risk bounds invariant with respect to the detailed probabilistic structure of the model. This approach works well for small or moderate samples and covers the case of a misspecified par...
متن کاملReconstruction for Colorings on Trees
Consider k-colorings of the complete tree of depth l and branching factor ∆. If we fix the coloring of the leaves, for what range of k is the root uniformly distributed over all k colors (in the limit l → ∞)? This corresponds to the threshold for uniqueness of the infinite-volume Gibbs measure. It is straightforward to show the existence of colorings of the leaves which “freeze” the entire tree...
متن کاملStein Type Estimators for Disturbance Variance in Linear Regression Model
This article has no abstract.
متن کاملUniform bounds for exponential moment of maximum of a Dyck path
Let D2n be a Dyck path chosen uniformly in the set of Dyck paths with 2n steps. The aim of this note is to show that for any λ > 0 the sequence E(exp(λ(2n) maxD2n)) converges, and therefore is bounded uniformly in n. The uniform bound justifies an assumption used in literature to prove certain estimates of high moments of large random matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Communications in Probability
سال: 2011
ISSN: 1083-589X
DOI: 10.1214/ecp.v16-1630